Symmetric groups. Abstract groups.

Sasha Patotski

Cornell University

ap744@cornell.edu

November 9, 2015

Definition

Let X be a set, and let G be a subset of the set Bij(X) of all bijections $X \to X$. One says G is a **group** if

- **•** *G* is closed under composition;
- \bigcirc id \in G;
- 3 if $g \in G$, then $g^{-1} \in G$.

Example

Symmetries of a triangle, a square and a mattress form a group.

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

• Is G a group?

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its **order**.

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its **order**.

For 1 ≤ i < j ≤ n denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called transposition.

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its **order**.

- For 1 ≤ i < j ≤ n denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called transposition.
- If j = i + 1, the transposition (*ij*) is called a **transposition of neighbors**.

< 回 ト < 三 ト < 三 ト

Take $X = \{1, ..., n\}$, and take G = Bij(X) to be the set of all bijections from X to X. This group is usually denoted by S_n .

- Is G a group?
- How many elements does it have?

Definition

The number of elements in a group G is called its **order**.

- For 1 ≤ i < j ≤ n denote by (ij) the permutation swapping i and j, and doing nothing to the other elements. Such a permutation is called transposition.
- If j = i + 1, the transposition (*ij*) is called a **transposition of neighbors**.
- Prove that any permutation is a composition of transpositions of neighbors.

Sasha Patotski (Cornell University)

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

< 4 P ▶

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

• Find composition $\sigma_2 \circ \sigma_1$ of two permutations

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 5 & 1 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

• Find composition $\sigma_2 \circ \sigma_1$ of two permutations

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 5 & 1 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{pmatrix}$$

• Find the inverses of σ_1 , σ_2 and $\sigma_2 \circ \sigma_1$.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

• Find composition $\sigma_2 \circ \sigma_1$ of two permutations

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 5 & 1 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 6 & 1 & 5 \end{pmatrix}$$

• Find the inverses of σ_1 , σ_2 and $\sigma_2 \circ \sigma_1$.

• Verify that $(\sigma_2 \circ \sigma_1)^{-1} = \sigma_1^{-1} \circ \sigma_2^{-1}$.

• Let $a_1, \ldots, a_m \in \{1, 2, \ldots, n\}$ distinct elements. Denote by $(a_1 \ldots a_m)$ the cyclic permutation $a_1 \mapsto a_2 \mapsto \ldots \mapsto a_m \mapsto a_1$.

- Let a₁,..., a_m ∈ {1,2,..., n} distinct elements. Denote by (a₁... a_m) the cyclic permutation a₁ → a₂ → ... → a_m → a₁.
 Represent σ₁ = (1 2 3 4 5 6) as a composition of cycles on
- Represent $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 5 & 1 \end{pmatrix}$ as a composition of cycles on disjoint collections of elements.

- Let $a_1, \ldots, a_m \in \{1, 2, \ldots, n\}$ distinct elements. Denote by $(a_1 \ldots a_m)$ the cyclic permutation $a_1 \mapsto a_2 \mapsto \ldots \mapsto a_m \mapsto a_1$.
- Represent $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 5 & 1 \end{pmatrix}$ as a composition of cycles on disjoint collections of elements.
- Prove that **any** permutation can be represented by composition of cycles on disjoint collections of elements.

- Let $a_1, \ldots, a_m \in \{1, 2, \ldots, n\}$ distinct elements. Denote by $(a_1 \ldots a_m)$ the cyclic permutation $a_1 \mapsto a_2 \mapsto \ldots \mapsto a_m \mapsto a_1$.
- Represent $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 5 & 1 \end{pmatrix}$ as a composition of cycles on disjoint collections of elements.
- Prove that **any** permutation can be represented by composition of cycles on disjoint collections of elements.
- Note: such a decomposition is unique up to the order of composition.

- Let $a_1, \ldots, a_m \in \{1, 2, \ldots, n\}$ distinct elements. Denote by $(a_1 \ldots a_m)$ the cyclic permutation $a_1 \mapsto a_2 \mapsto \ldots \mapsto a_m \mapsto a_1$.
- Represent $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 6 & 5 & 1 \end{pmatrix}$ as a composition of cycles on disjoint collections of elements.
- Prove that **any** permutation can be represented by composition of cycles on disjoint collections of elements.
- Note: such a decomposition is unique up to the order of composition.
- Note: two disjoint cycles commute.

Definition

Definition

For $\sigma \in S_n$ define $inv(\sigma)$ to be the number of pairs (*ij*) such that i < j but $\sigma(i) > \sigma(j)$. This number $inv(\sigma)$ is called the **number of inversions** of σ .

• Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.

Definition

- Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.
- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?

Definition

- Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.
- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?
- Prove that for any representation of σ as a composition of N transpositions of neighbors, the sign $sgn(\sigma)$ is $(-1)^N$. (Need to be careful here.)

Definition

- Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.
- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?
- Prove that for any representation of σ as a composition of N transpositions of neighbors, the sign $sgn(\sigma)$ is $(-1)^N$. (Need to be careful here.)
- Prove that for two permutations σ, τ we have $sgn(\sigma \circ \tau) = sgn(\sigma)sgn(\tau)$.

Definition

For $\sigma \in S_n$ define $inv(\sigma)$ to be the number of pairs (*ij*) such that i < j but $\sigma(i) > \sigma(j)$. This number $inv(\sigma)$ is called the **number of inversions** of σ .

- Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.
- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 6 & 5 & 2 \end{pmatrix}$?
- Prove that for any representation of σ as a composition of N transpositions of neighbors, the sign $sgn(\sigma)$ is $(-1)^N$. (Need to be careful here.)
- Prove that for two permutations σ, τ we have $sgn(\sigma \circ \tau) = sgn(\sigma)sgn(\tau)$.

Definition

If $sgn(\sigma) = 1$, σ is called an **even permutation**, otherwise it's called **odd**.